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ELECTRONIC IMAGING 

ABSTRACT 

Theoretical and experimental research was proposed on topics of strategic impor- 
tance in electronic imaging with an emphasis on problems of basic research 
significance which also have relevance to novel systems for imaging, automatic 
pattern recognition, and remote sensing. Our goal has been to make contributions 
in imaging science that will lead to a better understanding of hybrid systems 
combining optical imaging, photosensors, and digital computers for signal process- 
ing. In the statement of work we had proposed research on three related topics. First, 
we proposed to study the controlled blurring caused by an idealized point spread 
function, i.e., the random-walk or speckle-like psf. This novel method for controlled 
blurring appears to be useful in secure transmission and in image compression; and 
this psf has many interesting mathematical properties that we have investigated. 
Secondly, we proposed a study of image recovery in the Fresnel-zone (incoherent 
case) when the imaging system is misfocused. We applied modern coherence 
theory together with current computer-science techniques in order to obtain optimal 
recovery and, as well, to establish theoretical limits on the image quality of the 
restoration. In this research we also established an operator-independent method 
for the identification of the focusing errors. For the third topic, we had intended to 
continue with the remote sensing of particulates to include extension of the inversion 
theory (formulated in 1990-1991) to the case of moving aerosols. Unfortunately, 
work in this area has not progressed as we had hoped, yet future plans remain to 
include the use of variable wavelength as a tool in paniculate diagnostics. This 
program of research has been heavily leveraged by cost participation from the 
University of Rochester, the industrial sponsors of the Center for Electronic Imaging 
Systems, the New York State Science and Technology Foundation, and the National 
Science Foundation. 



ELECTRONIC IMAGING 

SECTION 2: TECHNICAL PROGRESS REPORT 

In the following sections we present descriptions of three related research topics, 
starting each with a statement of the problem and then a summary of important 
results. 

2.1     The Random-walk point spread function 

2.1.1 Statement of the Problem 

In electronic imaging topics of major interest are the transmission and storage of high 
resolution images. Then, in cases where atmospheric turbulence leads to blurring, 
we would like to discover image recovery methods that are effective in restoring high 
quality images. Additionally, it may be possible to blur images in a simple controlled 
way in order to provide security or better image compression which would be useful 
both in transmission and storage. As a topic of basic research, we believe that a 
study of controlled blurring caused by a novel point spread function consisting of 25 
to 250 randomly distributed delta functions will lead to important theoretical results 
in speckle, in function theory, and in image recovery. Moreover, this study will lead 
ultimately to better methods for recovering images degraded by atmospheric 
turbulence. One research objective is to study image recovery methods using the 
controlled blurring caused by a random-walk point spread function. We would also 
like to study other blur functions particularly in regard to the occurrence of zeros in 
their spatial Fourier transform. Hopefully, we will discover several important new 
point spread functions that are useful for controlled blurring. Related objectives are 
to seek to establish a useful quantitative measure of image quality and to contribute 
to an understanding of better methods for image compression. 

2.1.2 Summary of Results 

In the time frame of this report Bryan Stossel completed his thesis titled "Image 
Processing, Coding, and Compression with Multiple-Point Impulse Response Func- 
tions" and received his Ph.D. in 1994. The multiple-point impulse response is unique 
among degradations in imaging systems. Most other degradations have transfer 
functions that can become very small or go to zero at many spatial frequencies. This 
results in errors in the recovery when the degraded image is divided by this transfer 
function. The randomness of the multiple-point impulse response gives a zero in the 
transfer function once in only 1000 realizations. Thus the reconstructions are 
virtually error-free. An added benefit is that this makes the multiple-point impulse 
response an ideal tool for image coding and compression since the blurred image 



contains much less high frequency detail than the original image and therefore can 
be compressed to much higher ratios than the original without loss of information. 
And unless the exact point spread function is known, reconstructing the original 
image is virtually impossible resulting in highly secure data encryption. A patent and 
several publications have resulted from this work. 

2.2     Image Recovery and Blur Identification in the Fresnel Zone 

2.2.1     Statement of the Problem 

Image restoration deals with the estimation of the sharp image from a recorded 
image which is degraded by blurring and noise. Most restoration methods assume 
that the blur is known a priori. In some practical situations, the type of blur may be 
known, e.g., out-of-focus, but the amount of blurring may be unknown and may need 
to be estimated before restoring. We propose to investigate the blur identification 
problem in four stages. 

Stage 1: As a topic of central importance in imaging science, one needs to establish 
theoretical bounds to image restoration from blurred samples taken at various planes 
in the Fresnel zone. Our approach to this is to apply modern coherence theory to the 
computer science methodologies in order to devise optimal recovery methods and 
to establish theoretical limits. An image quality metric will be employed in order to 
measure the recovered images. In this phase of the research, we are fortunate to 
have the participation by Professor Emil Wolf. 

Stage 2: We propose a neural network approach to the identification of the amount 
of defocus in recorded images. This approach is motivated by the successful 
application of neural networks to solving pattern recognition problems. 

Stage 3: Another goal is to perform a comparative study of blur identification 
methods. Despite the attention that the blur identification problem has recently 
received, there is no single comparative study of the existing blur identification 
methods. The objective of the proposed study is to compare the existing blur 
identification methods by evaluating (i) their applicability to various blur types, 
(ii) their performance in the presence of noise, and (iii) their computational efficiency. 

Stage 4: We will finally investigate the identification of blurs due to depth of field. We 
propose to apply sectioned methods based on the local Fourier transform. We also 
propose to investigate the wavelet transform as an alternative to the local Fourier 
transform. The objective of this study is to segment the degraded image based on 
the amount of defocus on each section, and utilize this information in image 
restoration. 



2.2.2     Summary of Results 

A theoretical analysis has been performed for image retrieval when a planar 
transparency is illuminated by spatially incoherent light that propagates in free space 
and is then recorded on a CCD array, but without using an imaging lens. Based on 
Maxwell's equations and Fourier-optical, linear-systems theory, equations were 
derived for digital processing of this badly blurred image in order to recover a 
reasonable facsimile of the original. Rigorous impulse responses and their corre- 
sponding transfer functions were derived for the cases of general amplitude 
illumination and for incoherent illumination. With exact results in the framework of 
Maxwell's equations, we found that free-space propagation from a planar aperture 
is space-invariant in general. One main theme was to derive a rigorous expression 
for the optical-transfer-function of free space, and thereby secondly to study the 
feasibility of image retrieval using a lensless recording system and post digital 
processing. We found the interesting result that this intensity based transfer function 
consists principally of a modified Bessel function of the second kind, K^v), which is 
well known not to have any zeros for finite real values of its argument. The 
significance of this is that recovery of the pictorial image is likely using digital 
processing means. A paper on this subject has been published. 

We have successfully sorted a scene-independent set of images based on blur level 
using a computer for automatic assessment of image quality. The research was then 
extended to use a neural network. The network was trained to sort the images 
according to blur level and a high correlation was achieved with a human visual 
assessment. A paper was presented at the 47th Annual IS&T Conference in 1994. 

2.3     Retrieval of Spatial Distribution and Size of Particles 

2.3.1   Statement of the Problem 

Particle measurements are of special importance in the study of combustion 
processes, pollution control, biological experiments and many other military and 
industrial applications. Optical techniques based on diffraction with laser illumina- 
tion are most frequently used among all optical and non-optical methods. The optical 
measurement requires an inversion process to reconstruct information of particle 
samples, such as size, shape and spatial distribution. Different methods, including 
direct integral transforms, matrix inversions and iteration algorithms, have been 
studied in past decades and most of them are used solely for particle sizing. As early 
as in 1955 Shifrin developed the original integral-transform method for recovering 
the size-distribution function from the optical transform intensity of a spherical 
particle. However, little success was obtained in early applications of this inversion 
method mainly due to the existence of speckles in the scattered field. The invention 



of the ring-wedge photodetector in 1970 resolved the speckle problem and has been 
since applied widely to optical particle-size measurements. Matrix-inversion tech- 
niques have been used to analyze the intensity information obtained by ring 
detectors. The main weakness of matrix inversion is its susceptibility to noise, so it 
does not provide reliable particle-size distributions especially when the number 
density of particles is low. Our recent study presents an improved theory for the 
inversion formula and interesting new experiments of the resolution in size vs. the 
sampling angle. Compared with Shifrin's first formula the current formula does not 
contain a derivative of the measured intensity and is less susceptible to noise. 
Experiments using the ring-wedge detector and this inversion formula to recover 
different particle-size distributions show excellent agreement with the theory. 

We propose to extend our study of the remote sensing of particulates, as follows. 
Besides size distribution, the remote sensing will include recovering information 
about spatial location, speed, and number-density distributions of the scattering 
particles. 

2.3.2   Summary of Results 

For the third topic, we had intended to continue with the remote sensing of 
particulates to include extension of the inversion theory (formulated in 1990-1991) 
to the case of moving aerosols. Unfortunately, work in this area has not progressed 
as we had hoped, yet future plans remain to include the use of variable wavelength 
as a tool in particulate diagnostics. 



ELECTRONIC IMAGING 

SECTION 3: PATENTS AND PUBLICATIONS 

Patents 
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•Copies of journal articles can be found in the Appendix. 
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THE BLURRED BIRD 

Nicholas George and Bryan J. Stossel 
Center for Electronic Imaging Systems 

The University of Rochester 

29 October 1993 

In a long-term study of image recovery for atmospherically degraded images, Nicholas 

George and Bryan Stossel have been investigating an idealized multiple-point impulse 

response. For theoretical purposes they assert a multiple-point impulse response, 

similar to speckle stellar interferometry in which a single impulse is imaged as, say, 25 

to 200 randomly spaced delta functions. Pictorially the effect is as shown in the 

accompanying photographs with the blurred object as shown. It appears visually as 

though shrouded in fog, certainly it is blurred far beyond recognition. In theoretical 

terms it is readily shown that the spatial frequencies in the blurred image have been 

reshaped with the high frequency content being greatly reduced by the ratio 1/N, where 

N is the number of points in the random-walk impulse response. 

An almost perfect image recovery is possible using an inverse filter generated by taking 

the two-dimensional spatial Fourier transform (FFT) of the degrading impulse response. 

Division of the FFT of the blurred object's intensity leads to an almost perfect recovery. 

It is surprising that a simple inverse filter is so effective, since in many other image 

recovery situations, contours of zeros in the Fourier transform leads to indeterminancies 

in the calculation of the recovered image. For the random-walk blur, these researchers 

have shown that the FFT has only discrete zeros with a computational chance of 

University of Rochester 
Rochester, New York 14627 





running into a zero thereby greatly reduced. They estimate some trouble with the image 

recovery once in ten thousand frames. 

Two interesting commercial applications of this research are being pursued. Since the 

high frequency detail is no longer apparent in the blurred image, it is reasonable to 

conjecture that FAX transmission of the images would require less space-bandwidth 

product than before. Using commercially available discrete-cosine-transform routines, 

these researchers have found that it is much easier to transmit the blurred bird than the 

original. Estimates for improved transmission, reduced pixels, are from two to four 

times. 

Secondly, transmission of the blurred object gives the sender a degree of privacy. With 

the widespread increase of FAX for color photographs, it is becoming increasinglt 

important to provide some degree of privacy in transmission, particularly for commercial 

art in advertising displays. Related experiments are presently being conducted for the 

coding and transmission of engineering drawings and topographic maps. 

This research is being supported by the Directorate of Physics of the U. S. Army 
Research Office. 



Automatic Image Quality 
Assessment 

David M. Berfanger and Nicholas George 
The Institute of Optics 
University of Rochester 
Rochester, NY 14627 

Introduction 

Psychovisual methods of image quality 
assessment, such as those described by Roufs, 
have a high correlation between observers and 
are widely considered the standard by which 
all other measures of image quality are 
compared.1 The development of automated 
methods of image quality assessment have 
reflected this. Grogan and Keene have 
developed a method of image quality 
measurement based on a computational model 
for the human perception of image 
brightness.2 Nill and Bouzas have presented 
an image quality measure based on the digital 
image power spectrum, which includes a 
model for the modulation transfer function of 
the human visual system.3 Saghri, Cheatham, 
and Habibi have presented a preliminary 
image quality measure which takes into 
account both the illumination level sensitivity 
and the spatial frequency sensitivity of the 
human visual system.4 Davies, Rose, and 
Smith have described an automatic image 
quality meter incorporating a model of the 

human visual system derived from both 
psychophysical and neurophysiological 
studies. ^ 

In our research a principal concern is to 
establish limits on automatic, operator- 
independent, image quality assessment with 
the goal of determining whether computerized 
systems can perform at the level of a human 
observer when assessing images widely 
varying in scene content. In this report we are 
considering the possibility of using diffraction 
pattern sampling in combination with neural 
network software in the assessment of image 
quality. Our approach will be to present two 
preliminary, illustrative experiments. The 
first experiment uses a simple data base 
obtained from professional stock photography 
and degraded using various levels of 
computer-generated blurring. We study this 
sorting task for academic purposes. The 
second experiment involves a limited data 
base obtained from the Eastman Kodak 
company that was created using various lossy- 
compression and retrieval techniques and was 
accompanied by visual quality ratings made 
by trained photointerpreters. Preliminary 
results for both experiments are promising. 

+ 
' Research supported in part by the National Science Foundation, the NYS Science and Technology 

Foundation and the Army Research Office. 



Diffraction Pattern Sampling and 
Neural Network Software 

Diffraction pattern sampling is an optical 
technique of spectral analysis based on the 
properties of the Fourier spectrum of a real 
image. Earlier experiments have been 
described in which diffraction pattern 
sampling has been used successfully to 
implement image quality metric 
algorithms 6'8, an(j diffraction pattern 
sampling in connection with neural network 
software has also been used successfully to 
classify finger prints, faces, and particulate 
suspensions, as well as to distinguish 
differences between dogs and cats. 9, ^ The 
optical portion of the diffraction pattern 
sampling system is shown in Fig. 1. Coherent 
illumination is provided by a laser beam that 
is expanded and collimated by a spatial filter 
and a collimating lens. A neutral density filter 
is used to control the intensity. The object 
plane is adjacent to an optical transform lens. 
A ring-wedge detector is centered in the back 
focal plane of the transform lens. 6 The output 
signals from this detector are amplified, 
digitized, and sent to a digital computer for 
further processing. 

For the experiments in this paper, 
diffraction  pattern  sampling is  digitally 

Collimating 
Microscope 
Objective 

Computer and 
Neural Network 

Software 

Neutral 
Density 
Filter Ring-wedge 

Detector 

Figure 1. Block diagram of the optical portion of the 
diffraction pattern sampling system. 

simulated using a standard FFT algorithm, 
and the resulting ring-wedge data is provided 
to neural network software for quality sorting 
tasks. This simulation is to be described more 
fully in a separate publication. The use of 
neural network software allows the study of 
differing network structures both before and 
after training; furthermore, in choosing 
appropriate data sets and in pre-selecting 
what information is given to the network, we 
believe it possible to obtain a better 
understanding of what measurable aspects of 
an image contribute to its perceived quality. 

Sorting Blur Level 
As a first step in our research, a 

preliminary experiment was conducted for the 
specific task of sorting images of differing 
scene type based on blur level within the 
images. We have chosen to study this sorting 
task for academic purposes. 

Ten digitized, high-quality images were 
obtained from professional stock photography. 
These images represented five different scene 
types: birds, text, human faces, buildings, and 
landscapes. Four degrees of degradation for 
each of these images were then created by 
introducing increasing amounts of computer- 
generated Gaussian blur. This produced a 
data set of fifty pictures at five distinct blur 
levels, which are described by the adjectives 
"very good," "good," "fair," "poor," and "very 
poor." 

The digitally simulated ring-wedge data 
for each of the images in the data set were 
subdivided into training and testing sets. A 
standard feed-forward neural network trained 
using the back propagation paradigm was 
chosen. This network had 32 ring-data input 
neurons, 32 wedge-data input neurons, 20 
hidden neurons, and 5 output neurons 
corresponding to the five blur levels. The 
network was trained and tested. Tables 1(a)- 
2(b) show the recognition results from two 
different training-testing strategies. The first 
strategy, detailed in Table la, includes a 



Image Type Learning Test 

Biid A B 

IEEE Chart A B 

Face A B 

Building A B 

Landscape A B 

(a) 

Blur Level errors recognition 

very good 0 100% 

good 0 100% 

fair 1 80% 

poor 1 80% 

very poor 1 80% 

(b) 
Table 1. (a) Training-testing strategy for an 

experiment based on blur-level recognition. Each 

letter symbol represents an original and the four 

corresponding degraded versions ofthat original, 

(b) Recognition results detailing error occurrences 

and correct recognition percentage 

Image Type Learning Test 

Bird A B 

IEEE Chart A B 

Face A,B 

Building A B 

Landscape A, B 

(a) 

Blur Level errors recognition 

very good 0 100% 

good 0 100% 

fair 1 86% 

poor 2 71% 

very poor 1 86% 

(b) 
Table 2. (a) Training-testing strategy for an 

experiment based on blur-level recognition. Each 

letter symbol represents an original and the four 

corresponding degraded versions ofthat original, 

(b) Recognition results detailing error occurrences 

and correct recognition percentage. 

representative from each scene type in both 
the learning and the testing sets. After 
training with this strategy, the neural 
network was able to recognize the blur level of 
the images in the testing set with the 
exception of three errors. The occurrence of 
these errors and the percentage of correct 
assessments for each blur level are presented 
in Table lb. The second strategy, detailed in 
Table 2a, includes only three of the five scene 
types in the learning set and all five types in 
the testing set. After training with this 
strategy, the neural network was able to 
recognize the blur level of the images in the 
testing set with the exception of four errors. 
The occurrence of these errors and the 
percentage of correct assessments for each 

blur level are presented in Table 2b. 

Sorting Degradation Produced by Lossy 
Compression 

As another aspect of our research, we wish 
to examine the effects of lossy image 
compression on the perceived quality of 
images. A preliminary experiment was 
conducted using a data set provided by the 
Eastman Kodak Company based on retrieval 
of images from several different compression 
routines and accompanied by a visual quality 
ratings made by trained photointerpreters. 

As in the previous experiment, the 
digitally simulated ring-wedge data for each of 
the images in the data set were subdivided 
into training and testing sets, and a standard 



feed-forward neural network trained using the 
back-propagation paradigm was again chosen. 
This network had 32 ring-data input neurons, 
32 wedge-data input neurons, 20 hidden 
neurons, and 6 output neurons corresponding 
to 6 equidistant points on the scale used for 
the visual ratings of the images, which ranged 
for zero to five. The network was trained and 
tested. The results from the testing set showed 
a correlation between the automatic 
assessments and the human assessments of 
0.92. 

Summary 

The preliminary experiments presented in 
this report show encouraging results. Using 
digitally simulated diffraction pattern 
sampling in combination with neural network 
software, we have been able to rate images 
based on the amount of blur added to the 
image and the amount of degradation 
produced by lossy compression routines. As a 
result, each of these experiments is currently 
being re performed using larger data bases 
containing five hundred or more images. It is 
our hope that these and other experiments 
will show that for certain tasks automated 
image quality assessment will be capable of 
performing at the level of human assessment. 
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Controlled Blurring in Image 
Processing 

Bryan J. Stossel and Nicholas George 
University of Rochester, Rochester, NY USA 

Introduction 

This paper reports some of the results of our 
research conducted in image processing with 
multiple-point impulse responses. The multiple 
point impulse response (MPIR) is defined as a 
number of impulses positioned within a 
prescribed region.^ The results of this work 
have applications for imaging through 
turbulence, where this point-spread-function 
represents an idealized model of the 
atmosphere, and also image coding and 
transmission. This research provides 
information about the limits of real-time 
adaptive imaging imposed by the 
atmosphereJ2'3J 

We will discuss the effects of blurring an 
intensity object scene with an MPIR and also 
show reconstructions obtained using an 
appropriate inverse filter. Also considered are 
some applications of this research to image 
coding and transmission. 

Blurring and reconstructions 

The effect of the MPIR is to image a single 
impulse as, say, 25 to 200 irregularly positioned 
delta functions. A representative psf is shown 
in Fig. 1 where 25 points are placed within a 
64x64 pixel window centered on the origin. This 
image has been enlarged by a factor of 2 in order 
to show clearly the impulses. Pictorially the 
effect of the MPIR on an object scene is as 
shown in Fig. 2. The blurred image is produced 
by convolution of the MPIR with an original 
scene consisting of 256x256 pixels with 8 
bits/pixel. The resulting image is then 
quantized to 8 bits/pixel. As seen in Fig. 2, it 
appears visually as though the original scene is 
shrouded in fog, certainly it is blurred far 
beyond recognition. In theoretical terms it is 
readily shown that the power spectrum in the 
blurred image have been reshaped with the high 
frequency content being greatly reduced by the 
ratio 1/N, where N is the number of points in 
the MPIR. 

An almost perfect image recovery is possible 
using an inverse filter generated from the two- 
dimensional spatial Fourier transform (FFT) of 
the degrading impulse response. Division of the 
FFT of the blurred object's intensity by the 
transfer function leads to an almost perfect 
recovery. It is surprising that a simple inverse 
filter is so effective, since in many other image 
recovery situations, contours of zeros in the 
transfer function lead to indeterminancies in the 
calculation of the recovered image. For the 
random-walk blur, we have shown that in 
general the FFT has only discrete zeros with the 
computational chance of encountering a zero 
thereby greatly reduced. 

We will also discuss the artifacts introduced 
by several sources of error, using the artifact 
classification method of Tekalp and Sezan.M 
Included in the discussion are the effects of 
having incorrect magnitudes for the impulses in 
the psf used in the inverse filter as well as 
incorrectly positioning the impulses. 

Applications 

Two interesting commercial applications of 
this research are being pursued. Since the high 
frequency detail is no longer apparent in the 
blurred image, it is reasonable to conjecture that 
FAX transmission of the images would require 
less space-bandwidth product than before. 
Using commercially available discrete-cosine- 
transform routines, we have found that it is 
much easier to transmit the blurred bird than 
the original. Estimates for improved 
transmission, reduced pixels, are from two to 
four times. 

Secondly, transmission of the blurred object 
gives the sender a degree of privacy. With the 
widespread increase of FAX for color 
photographs, it is becoming increasing 
important to provide some degree of privacy in 
transmission, particularly for commercial art in 
advertising displays. Related experiments are 
presently being conducted for the coding and 



transmission of engineering drawings and 
topographic maps. 

This research is supported by the U. S. Army 
Research Office, the National Science 
Foundation, and the New York Science and 
Technology Foundation. 
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Figure 1 MPIR consisting of 25 points, irregularly 
positioned within a 64x64 pixel window. The image 
has been enlarged by a factor of 2 for viewing 
purposes. 

Figure 2  Blurred image using the 25-point impulse 
response function corresponding to Fig. 1. 

Figure 3 Reconstructed image using an inverse filter 
corresponding the psfofFig. 1.   This image contains 
256x256 pixels and is an excellent representation of 
the original scene. 



Object Recognition and Image Coding 

Nicholas George, B. J. Stossel, and D. M. Berfanger 

Center for Electronic Imaging Systems (CEIS) 
University of Rochester, Rochester, NY, 14627, USA 

INTRODUCTION 
Research in electronic imaging is being 

conducted in a newly formed consortium in the 
Rochester community. The University of 
Rochester and the Rochester Institute of 
Technology have joined with leading corporations 
including Xerox, Eastman Kodak, 3M, Harris/RF 
Communications, and others in order to conduct 
cooperative research in electronic imaging. We 
have grouped the separate research into 9 major 
themes. In this presentation we will briefly 
review the scope of this Center's activity. Then, 
we will illustrate recent research results in two 
of the themes in more detail. 

For object recognition, we describe an all- 
digital system that replaces the analog ring- 
wedge detector.1 Other investigators have 
considered various hybrids: laser illumination 
with a CCD array in the transform plane and a 
software RW detector;2 laser illumination and a 
holographic element to obtain RW-data format;3 

incoherent-to-coherent liquid crystal interface, 
laser illumination, holographic optical element to 
obtain RW-format;4 and a RW-detector, laser 
illumination with a neural network for the 
classifier.5 With respect to fingerprints important 
approaches are described in the literature.6"10 A 
valuable source for neural network 
programming is the text by Masters.11 Our main 
objective in this paper is to compare the 
performance of an all-digital RW-detector system 

l^-F-^ 

Fig. 1. Diffraction-pattern-sampling system 
incorporating the ring-wedge photodetector and neural- 
network software: 0, input object; L. optical-transform 
lens; R/W, ring-wedge photodetector; NS, neural 
software; C, digital computer; A, amplifier and 
interface. 

with that of the analog multi-element array. To 
do this, we repeat and extend an earlier 
experiment.'2 

AUTOMATIC OBJECT RECOGNITION 
Fingerprint Recognition 

In the literature excellent results have 
been reported for automatic recognition of 
thumbprints using the basic diffraction-pattern 
sampling setup shown in Fig. 1. From Ref. 12, we 
illustrate the data set, 8 thumbprints labeled Fl 
through F8. Using the analog ring-wedge 
detector and laser illumination, we reported an 
error of 1 in 160, see Table 1.1. In the present 
study our central objective is to establish the 
accuracy of an all-digital configuration, as shown 
in Fig. 2. It consists of an object (glass slide with 
thumbprint), a lens imaging to a CCD-array in 
white light, followed by the all-digital recognition 
module. For the image acquisition, it is important 
to recognize that fingerprints are rather 
complicated   images,   requiring   approximately 
4 X104 pixels each for adequate representation. 

All-Digital Ring-Wedge Detector 
For pattern recognition of an input image 

in white light, we would like to assert that the use 
of a ring-wedge detector array in the Fourier 
space of the intensity-based array image is a 
reasonable approach. With the intensity-based 
Fourier transform, we will demonstrate that both 
spatial spectral density and edge-content and 
edge-angle correlations are useful data forms for 
object recognition. Since the original RW-detector 
had 32 rings and 32 wedges based upon 
automating recognition in high resolution 
images in film,1 we will use this as a basis for our 
all-digital RW-detector array. Hence, in Fig. 2, We 
have incorporated  software  appropriate  for a 

Invitori papor present«! and   Tiikayanagri   Memorial   Session,  Asia 
Display "95. Hiimamatsu, Japan, October 15)05. 

ALL-DIGITAL 
Fig. 2. All-digital recognition system shown in dashed 
box, including software embodiment for FFT, ring- 
wedge data format, and neural software. 
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Fig. 3. Thumbprints used in thumbprint sorting 
experiments: Fl to F8, reading from left to right, top to 
bottom. 

2-dimensional FFT followed by a software RW- 
detector module. There is data normalization 
followed by a neural network to perform the 
recognition. 

In the experiment described in Ref. 12, the 
optical Fourier transforming system was set up 
such that the outer edge of the ring-wedge 
detector corresponded to a spatial frequency of 
10.3 cycles/mm. Therefore, for the subsequent all- 
digital experiments described in the next section, 
digital images of all thumbprints in the data set 
were acquired using a scanning resolution of 
20.6 samples/mm (8 bits/sample), corresponding 
to a Nyquist frequency of 10.3 cycles/mm. The 
sampling geometry of the digital system was then 
chosen to approximate closely the geometry of 
corresponding elements in the analog detector 
array. 

Recognition Experiments 
Table 1.2 details the results of a sorting 

experiment using digital ring-wedge data 
calculated directly from the 8-bit-per-pixel, 
thumbprint images. As in the experiment 
described in Ref. 12, the data were separated into 
a learning set (5 each) and a testing set (20 each). 
In structuring the neural network we chose a 
three-layer, fully connected, feedforward 
configuration trained using a normalized 
cumulative backpropagation learning paradigm. 
The network had 59 input neurons (rings 6-32 
and wedges 1-32), 12 hidden neurons, and 8 
output neurons (F1-F8). Input data were 
preprocessed to be scaled approximately from -1 
to +1. The logarithms of the ring data were used 
with an appropriate bias subtracted off and 
wedge data were rank ordered and normalized. 
We found an error rate of 2 in 160. Separately, we 
have been successful with ring-only (orientation- 
independent) and wedge-only (scale-independent) 
sortings. 

Table 1.1 

Testing Set 

Maximum Valued On put Neuron 

1 8 

Fl 
F2 
F3 
F4 
F5 
F6 
F7 

20 
20 

20 
20 

20 
19 

20 
F8     - 20" 

Table 1.2 Maximum Valued Ouput Neuron 

Testing Set 123        456        7       8" 

Fl 
F2 
F3 
F4 
F5 
F6 
F7 
FS 

20 
19 

20 
20 

20 
19      1 

20 
20 

' 

Table 1.3 Maximum Valued Ova put Neuron 

Testing Set 1        2       3        4       5       6        7       8 

Fl 
F2 
F3 
F4 
F5 
F6 
F7 

20 
20 

20 
20 

20 
20 

20 
F8 20 

Table 1.4 Maximum Valued Ouput Neuron 

Testing Set 1        2       3        4       5       6       7       8 

Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

20 
20 

20 
20 

20 
20 

20 
20 

Table 1.3 details the results from a sorting 
experiment using digital ring-wedge data 
calculated from binary images of the fingerprints 
obtained by globally thresholding each image at 
its mean gray level value. When the same 
learning/testing strategy, network structure, and 
input preprocessing were utilized, as described 
above, we found zero errors in 160. 

Table 1.4 details the results from a sorting 
experiment using digital ring-wedge data 
calculated from only the odd part of the binary 
images used previously. The same 
learning/testing strategy, network structure, and 
input preprocessing were utilized, as described 
above. Again, we found zero errors in 160. A 
similar experiment using only the even part of 
the binary images also resulted with zero errors 
in 160. The use of even-part, odd-part, and phase 
features of the all-digital system presents 
important new possibilities which we are 
investigating. 



IMAGE BLUR FOR CODING 
Image Restoration, and the MPIR 

Image  restoration for scenes that have been 
' degraded by a multiple-point impulse  response 
„(MPIR)    has    been    studied    recently13"13.   The 

ultiple-point impulse response is prescribed to 
ue a number  of impulses   positioned within   a 
specified     region.     The     MPIR     provides     a 
particularly interesting case of blurring that lends 
itself to  theoretical   calculations   such   as   the 
filtering properties of the transfer function and 

.the average number  of zeros per area  of the 
transfer function. This impulse response also has 
interesting applications for image   coding  and 
compression 

Our central interest is the recovery of intensity 
images that have been blurred by a multiple-point 
impulse response, b(x,y) that consists of a number, 
N. of irregularly positioned impulses defined by 

b{x. y) = £ 8{x - x„. y - y„), (1.) 

where 5fx,y) is the two-dimensional Dirac delta 
function and (x„,y„) are the positions of the 
impulses as in Fig. 4. The transfer function 
corresponding to this multiple-point blur function 
is 

B(u. v) = £ exp[-i2ff(ux„ + vyK)]. (2i 
r.-=l 

.nere i-=-l. One notices immediately the random- 
walk nature of this transfer function. 

We now present the results of blurring an 
original scene with an MPIR of the form given by 
Eq. (.1) as well as reconstruction results using a 
generalized inverse-filter algorithm. The MPIR. 
shown in Fig. 4, consists of 50 unit amplitude 
impulses uniformly distributed within a 64*64 
pixel region, centered on the origin. The original 8 
bits/pixel object scene is blurred by the MPIR and 
quantized to 8 bits/pixel, thus introducing 
quantization noise. The blurred image is shown in 
Fig. 5. The original object scene has been zero- 
padded to eliminate truncation artifacts16. One 
can see from this figure that the 50-point impulse 
response has obscured the fine  details of the 

.image and that the original object is no longer 
distinguishable. The recovered image shown in 
Fig. 6 is an excellent representation of the original 

•object. Similarly good reconstructions are obtained 
for 25 impulses within the same 64x64 pixel 
window, as well as for 100 and 200 impulses. 
The excellent results obtained in Fig. 6 are due to 
the fact that the zeros of the random-walk transfer 
" nction B(u,v) occur at isolated frequencies. We 

uve derived a theoretical expression for the 
average number of zeros per area present in the 
transfer function based on previous work on the 
zeros of speckle patterns.13'14,17 

Fig.   4     A   typical   MPIR   consisting   of  50   impulses 
uniformly distributed within a 64x64 pixel window. 

Fig. 5 The blurred image resulting from the convolution 
of the impulse response of Fig. 4 and the original scene. 
The original scene is obscured within this image. 

Fig. 6 The restored original scene using a generalized 
inverse filter algorithm. Note the high frequency details 
of the rotunda and flag pole. 

Filtering properties of the MPIR 
An important aspect of the MPIR and the 
corresponding random-walk transfer function is 
its filtering properties. A convenient measure of 
the frequency response of the system is the 
average power spectrum, (B(u,o)B*(u,v)) where 
the asterisk represents the complex conjugate and 
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Fig. 7 Plot of the average power spectrum for the case 
where 50 impulses are uniformly distributed within a 
64x64 window. 

the ensemble average is over an ensemble of 
different realizations of% andyn. Substitution of 
Eq. (2) into the average power spectrum yields 

(B[u,v)B'{u.v)) = / j>xp[-i27r(uxm + vym)] 
\m=l 

(4) 

Omitting 

x£exp[üff(ux„+uyn)]). 

the details of the statistical 
calculation13, we can evaluate Eq. (4) based on the 
assumptions that xn and y„ are independent, 
uniformly distributed random processes within a 
window WxxWy. The resulting expected value for 
the power spectrum is found to be 

(B{u.v)B\u.v))        = N \    v        '      v        '/uniform 

+(N2 - N)sinc2(uWx)smc2(vWy).        (5) 
From Eq. (5) it can be seen that the high spatial 

frequencies are attenuated by a factor of 1 IN with 
respect to the dc value. These characteristics can 
be seen in Fig. 7 which contains a plot of the 
average power spectrum when Wx=Wy=64. 
Shown in the plot are three curves: the theoretical 
curve corresponding to Eq. (5), an experimental 
curve for an ensemble of 50 members, and an 
experimental curve for a single realization. 

Image compression and noise 
The controlled image blur, as in Fig. 5, is well 

suited to efficient and private data transmission 
and we describe the use of DPCM and DCT-based 
algorithms. For DPCM compression, we find that 
the bit rates required in a Huffman code can be 
reduced up to 50% by using a multiple-point blur 
prefilter. Correspondingly we find a reduction of 
70% in the bit rate for the DCT-based case, over 
using DCT with the original image. It is found 
that practical bit rates on the order of one bit per 
pixel can be achieved with excellent quality. We 
find, too, that controlled blurring is useful    in 

transmitting images that are immersed -in 
speckle, using the simple test target shown in Fig. 
818. Controlled blurring provides a useful means 
of coding a speckled image for efficient 
transmission and recovery. This technique is 
expected to be of value in the transmission of 
ultrasound images. This research was supported 
in part by the U.S. Army Research Office and by 
the National Science Foundation. 

Fig. 8 Upper: Test target used to study data compression 
algorithms on images corrupted by speckle noise". Lower: 
Typical speckle noise where die average speckle size is 
on the order of the smallest test taraet object. 

A.    Spindel 
U.S.   patent 
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Multiple-point impulse responses: 
controlled blurring and recovery 

(Optics Comm. 121 (1995) 156) 
Bryan J. Stossel, Nicholas George 

The Institute of Optics, University of Rochester. Rochester, NY14627, USA 

Due to an oversight of the publisher two figures on p. 158 of the paper are interchanged. The correct figures 
with their captions are as follows: 

Fig. 1. MPIR consisting of 25 points, irregularly positioned within 
a 64 x 64 pixel window. The image has been enlarged and the 
grey levels inverted (black = 255) to show detail. 

Fig. 2. Blurred image using the 25-point impulse response function 
shown in Fig. 1. The original scene contains 256 x 256 pixels. 

0030-4018/96/$12.00 © 1996 Elsevier Science B.V. All rights reserved 
550/0030-4018(95)00705-9 
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Abstract 

We present the results of controlled blurring of an image using a multiple-point impulse response and thereafter recovering 
the original scene using a generalized inverse filter. The multiple-point impulse response consists of delta-function impulses 
irregularly positioned within a prescribed area. This impulse response is shown to degrade the image beyond recognition. 
Excellent recoveries are obtained for pictorial and textural images. An important result is that the zeros of the transfer function 
occur at discrete locations and therefore have a negligible effect on the image recovery using the generalized inverse filter. 

1. Introduction 

Several aspects of image restoration for scenes that 
have been degraded by a multiple-point impulse 
response (MPIR) are presented. The multiple-point 
impulse response is prescribed to be a number of 
impulses positioned within a specified region. This 
impulse response provides a particularly interesting 
case of blurring that lends itself to theoretical calcula- 
tions, and hence leads to a better understanding of the 
limits imposed on image recovery. In this paper our 
interest is the use of the MPIR to blur an object scene 
in a controlled manner. Such an application reduces the 
amount of high frequency detail in the image and can 
render the original scene unrecognizable to an observer. 
We believe that study of this highly idealized impulse 
response may have importance in image compression 
and may provide insight into image recovery for images 
degraded by propagation through a turbulent medium. 

* This research is supported in part by the U.S. Army Research 
Office, the National Science Foundation, and the New York State 
Science and Technology Foundation. 

Early image restoration using inverse filtering and 
computer methods are described by Harris [1]. The 
extension to optical processing in the presence of noise 
[2] and a comprehensive listing of various image res- 
toration methodologies [3] have been published. In 
this early work attention was directed toward the del- 
eterious effects of contours of zeros in the blur transfer 
function. These zero contours inhibit the use of the 
inverse filter in most practical applications. A signifi- 
cant result presented here is that essentially complete 
image recovery is possible for blurring due to MPIR 
degradations using a generalized inverse filter. As 
described herein, the excellent reconstructions are pos- 
sible, in large part, because the zeros of the transfer 
function occur at discrete locations and thus are rarely 
encountered in sampling with the generalized inverse 
filter; We show that the theoretical expression for the 
average number of zeros in the transform space is con- 
firmed by computer simulation. 

In this paper we present in Sec. 2 a description of the 
imaging model including the functional form of the 
impulse response and the corresponding transfer func- 

0030-4018/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
550/0030-4018(95)00460-2 
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tion. In Sec. 3 results are presented for the blurring 
process as well as the recovery of a pictorial image that 
has been blurred by a 25-point impulse response. It is 
shown that, provided the positions of the impulses are 
known precisely, excellent reconstructions are 
obtained. The discrete nature of the zeros in the transfer 
function is demonstrated in Sec. 4 as well as the outline 
of a theoretical calculation of the average number of 
zeros per area of the random-walk transfer function 
corresponding to the MPIR. A plot of the average num- 
ber of zeros per area, comparing the theoretical calcu- 
lation and experimental results, is presented for the case 
where the impulses are uniformly distributed within a 
square window [4,5]. The results presented in Sec. 5 
for the coding and decoding of a textual image blurred 
by a 50-point impulse response illustrate that the fact 
that the MPIR may be used to obscure an image beyond 
recognition and that with knowledge of the coding key 
the original data may be recovered. 

2. Multiple-point impulse response functions 

Consider an object having an intensity described by 
the function/(x, y) where (x, y) are the spatial coor- 
dinates. This scene is blurred in a controlled manner 
by convolution with a blurring function b(x, y), also 
known as the point spread function (psf). The intensity 
of the blurred image g(x,y) for a linear system is given 
by 

£(*. y) =/(*. y) *b(x, y) +n(x, y), (1) 

where the asterisk, *, represents the two-dimensional 
convolution operator and n(x, y) is an additive noise 
term. 

By taking the Fourier transform of Eq. (1), the spa- 
tial-frequency representation for the blurred image is 
given by 

G(u, v) =F(M, u)B(u, v) +N(u, v) , (2) 

where upper case functions represent the two-dimen- 
sional, spatial, Fourier transforms of their lower case 
counterparts, and (u, v) are the spatial frequency coor- 
dinates corresponding to the spatial coordinates (x, y) 
respectively. B(u, v) is the transfer function for the 
system. The image recovery problem is then to obtain 
a reasonable estimate,/(jc, y), of the original scene/(x, 
y) given g(x, y), the observed image, and S(x, y), an 

estimate of the blur function b(x, y). Herein the caret 
(*) is used to designate an estimate of the named func- 
tion. Errors between the original objectf{x. v) and the 
recovered estimate /(JC, y) may arise from several 
sources [6]. The sources of error of most interest to us 
regarding the MPIR are errors made in the determina- 
tion of the point spread function, b(x, y), as well as 
errors due to those regions in the transform domain 
where the recorded image spectrum is zero. The arti- 
facts introduced by these errors have been studied [4] 
and will be reported in a separate publication. 

Our central interest is the recovery of intensity 
images that have been blurred by a system character- 
ized by a multiple-point impulse response, b{x, y). This 
impulse response consists of a number, N, of irregularly 
positioned impulses and is defined by 

b(x,y)" £ anS(x-xn,y-yn), (3) 

where S(x, y) is the two-dimensional Dirac delta func- 
tion [7]. This particular blur function represents a set 
of N impulses with amplitudes a„ and positions (*„, 
y„). The transfer function corresponding to this multi- 
ple-point blur function is 

B(u, »)- £ anexp[-i2Tr(uxn + vy„)] , (4) 

where i2= — 1. One notices immediately the random- 
walk nature of this transfer function. We may consider 
the transfer function at spatial-frequency coordinate (u, 
v) to be comprised of a sum of N complex phasors with 
the amplitude of the nth phasor being a„ and its phase 
angle 2ir(uxn +vyn). 

3. Image degradation and recovery 

We now present the results of blurring an original 
scene with an MPIR of the form given by Eq. (3) as 
well as reconstruction results using a generalized 
inverse filter algorithm. The MPIR, shown in Fig. 1, 
consists of 25 unit amplitude impulses positioned 
within a 64 X 64 pixel region, centered on the origin. 
The positions of the impulses are chosen from a com- 
puter generated ensemble of uniformly distributed ran- 
dom numbers. The original 8 bits/pixel object scene is 
blurred by the MPIR and quantized to 8 bits/pixel, thus 
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Fig. 1. MPIR consisting of 25 points, irregularly positioned within a 
64 X 64 pixel window. The image has been enlarged and the grey 
levels inverted (black« 255) to show detail. 

Fig. 2. Blurred image using the 25-point impulse response function 
shown in Fig. I. The original scene contains 256X 256 pixels. 

introducing quantization noise. It has been found for 
the MPIR that quantization results in noise that is 
approximately 20dB below the signal. The blurred 
image is shown in Fig. 2. The original object scene has 
been zero-padded to eliminate truncation artifacts [6], 

which would result if the blurred image was restricted 
to the same number of pixels as the original scene. One 
can see from this figure that the 25-point impulse 
response has obscured the fine details of the image and 
that the original object is no longer distinguishable. The 
recovered image shown in Fig. 3 is an excellent rep- 
resentation of the original object, having an rms error 
of approximately two percent. Similarly good recon- 
structions are obtained for SO impulses within the same 
64X64 pixel window, as well as for 100 and 200 
impulses. 

The method used to recover the object scene is a 
generalized inverse filter where the filter operator P(u, 
v) is described by 

P(u, v)G(u,v)=< 

rG(u,v) 
B(u, u) 

0, 

,   B(u,v)*0, 

B(u,v)=0, 
(5) 

where ß(u, v) is an estimate of the spatial Fourier 
transform of the blur function. It is well known that the 
direct solution of Eq. (2) leads to an ill-posed problem 
and thus some means of regularization must be incor- 
porated [8,9]. It is also clear that the filter described 
by Eq. (5) is only weakly regularized. Due to the small 

Fig. 3. Reconstructed image using a generalized inverse filter cor- 
responding to the psf of Fig. 1 and defined in Eq. (5). This scene 
contains 256 X 256 pixels. 
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values of 5(«, v), any errors in determining either G(u, 
v) or B(u, v) in the neighborhood of a zero become 
greatly amplified resulting in the so-called data-discon- 
tinuity problem where small perturbations in the data 
result in large errors in the reconstruction. This problem 
is particularly important when the zeros of the transfer 
function form continuous contours [6] and thus few 
problems can be solved using such an algorithm. 

Before turning to a discussion of the zeros of the 
random-walk transfer function and a practical appli- 
cation of the MPIR, let us illustrate, using two common 
examples for b(x, y), the typical deleterious effects of 
encountering zeros and small values in the transfer 
function when using the inverse filter. While no doubt 
well-known to researchers in the field, the image 
retrieval is so poor in a typical-case that it is difficult to 
find illustrative examples in the literature. In the para- 
graphs below we present the recovery results for a 
square impulse response and a Gaussian blur using the 
generalized inverse filter of Eq. (5). 

The case for which b(x, y) is a square blur function 
yields a transfer function given by 

*(«,«)- 
sin( 77-1^«) sin(wLyU) 

mi iw 
(6) 

which contains zeros for u = m/Lx and v = n/Ly, where 
m and n are integers. Shown in Figs. 4a and 4b are the 
degraded and restored images for the case where the 
blur function is a 6 X 6 square. The noise amplification 
due to the small values of the transfer function in the 
neighborhood of the zero contours is clearly seen as 
strong periodic artifacts in the recovered image. A more 
subtle illustration of the need for regularization is given 
by the case when the impulse response is a Gaussian. 
Shown in Figs. 4c and 4d are the degraded and restored 
images when the blur function is a Gaussian with a 
standard deviation of 5 pixels. In this case the transfer 
function has no zeros, and yet even for this relatively 
small amount of degradation the generalized inverse- 
filter result in Fig. 4d is dominated by noise and is 
markedly poorer than the original degraded scene. 

It is clear from Figs. 4a and 4c that the amount of 
visual degradation introduced by the square and Gaus- 
sian psfs is considerably less than for the case of the 
25-point MPIR. The reconstructions shown in Figs. 3, 
4b, and 4d accentuate the excellent results obtained for 
the MPIR, and serve to delineate the remarkable ability 
of the generalized inverse filter to recover the original 

scene for multiple-point impulse response degrada- 
tions. They also illustrate the importance of understand- 
ing the structure of the zeros in the transfer function 
and the role the zeros have in the application of recon- 
struction algorithms. 

4. Zeros of the transfer function 

An important property of the random-walk transfer 
function is that the zeros occur at discrete spatial fre- 
quencies. This property is illustrated in Figs. 5 and 6. 
The zero contours for the real and imaginary parts of 
the transfer function are shown in Figs. 5a and 5b 
respectively. It is obvious that the zero contours form 
closed, continuous curves as is expected for the inter- 
section of the three-dimensional surfaces R(u,v) and 
X(u, v) with the zero-plane. On the other hand, the 
zeros of the transfer function occur at the intersection 
points of these two sets of curves. The zeros of the 
transfer function are shown in Fig. 6a, with an enlarged 
view of the inset shown in Fig. 6b. From Figs. 6a and 
6b, it is seen that the zeros of the transfer function do 
indeed occur at discrete points. 

Since the zeros of the transfer function are discrete, 
they are countable. Isolated zeros have been reported 
in the literature on crystallography [ 10,11 ] and acous- 
tics [12], and there has been important consideration 
of isolated zeros in speckle patterns, [ 13,14]. However 
calculation of the average number of zeros per area for 
the specific case of the zeros of the random walk of Eq. 
(3) has not been found. Herein we present the essenti al 
details of this calculation. 

As seen from Eq. (3), the transfer function B(u,v) 
is in general a complex function which can be rewritten 
as 

B(u,v)~R(u,v)+iX(u.u), (7) 

where R(u, v) and X(u, v) are the real and imaginary 
parts of the transfer function respectively. Baranova et 
al. [13] have presented an interesting expression for 
the average number of zeros per area, M, of a complex 
function, which in a suitable form is given by 

Ms/' (J S[R(u, u)] 8[X(u, v)] dRdX 
)■ 

(8) 
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Fig. 4. Blurred and recovered images for common psfs using the generalized inverse filter, (a) The degraded image using a 6X6 pixel square 
psf. (b) The generalized inverse filter result for (a), (c) The degraded image using a Gaussian psf with a 4-pixel standard deviation, (d) The 
generalized inverse filter result for (b). 

where the integral is taken over a prescribed area j/. 
The bracket notation <... > is used to denote an average 
over an ensemble of realizations. This expression can 
be seen to count the number of zeros in the transfer 
function, since the integrand is nonzero only when both 
the real and imaginary parts of the transfer function are 
simultaneously zero, in which case the value oiMsf is 
incremented by one. After making a change of variables 
from R and X to the real variables u and v and applying 

the definition of ensemble average, Eq. (8) can be 
written as 

Msf- j ... j 8[R(u, v)) S[X(u, v)] \J\ 

XPüiR, X, J?M, /?„, Xu, Xu) 

XdRdXdRudRvdXK dX0 du du. (9) 

InEq. (9), |7| is the transformation Jacobian, 
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Fig. 5. (a) Zero-contour plot for the real part of a random-walk 
transfer function. Only the upper half-plane (u>0) is shown, (b) 
Zero-contour plot for the imaginary part of the same random-walk 
transfer function as in (a). Again only the upper half-plane (t>>0) 
is shown. The real and imaginary parts are real-valued functions and 
the zero contours form continuous, closed curves. 

dR dR dx 
V   a- _ 

"    du' '     Bv' "    du' 

dX 

dv* 
(10) 

and p6(...) is the sixth order joint density function of 
the enclosed variables, R, X, R„, R„ X„ and Xv. The 
notation /.../ is used to represent all of the integrals 
corresponding to the differentials in the integrand taken 
over appropriate intervals. It is a straightforward exer- 
cise to reduce Eq. (9) to a one-dimensional form 
(dropping X and v) and obtain a result equivalent to 
Rice's [ 15 ] result for the expected number of zeros of 
a random noise current. 

In order to evaluate Eq. (9), an expression for the 
joint density function, p6(...), is needed. The sixth 
order joint density function can be simplified to a prod- 
uct of first order density functions provided it can be 
shown that the fields and their first partial derivatives 
obey Gaussian statistics and are all mutually uncorre- 
lated. It is well known that the statistics of the random- 

walk are asymptotically Gaussian [16-18]. For the 
case of a small number of scatterers (a small number 
of steps in the random-walk), it is known that the two- 
dimensional random walk does not obey Gaussian sta- 
tistics [19-21]. The regime in which the statistics 
begin to become Gaussian has been found to be TV« 7 
[21,22]. It is readily found for typical cases, where 
N > 20, that the real and imaginary parts of the transfer 
function are well approximated by Gaussians [4]. The 
fact that the real and imaginary parts of the transfer 
function are Gaussian ensures that the first partial deriv- 
atives are also Gaussian [ 17]. 

If the field components can be shown to be mutually 
uncorrelated, then, since each component obeys Gaus- 
sian statistics, the sixth order joint density function may 
be simplified into the product of the first order density 
functions of each component. While the details of the 
derivation are not presented here, it can be shown that 

Fig. 6. (a) Zero-contour plot for the random-walk transfer function 
corresponding to Fig. Sa and 5b. Only the upper half-plane (v>0) 
is shown. The transfer function is a complex-valued function and the 
zero contours are formed by the intersection of the two sets of con- 
tinuous, closed curves shown in Fig. 5. The zeros occur at isolated 
points, (b) An exploded view of the inset region of (a). 
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all field components, R(u, u), X(u, v), Ru(u, v), etc., 
are mutually uncorrelated provided the region of inter- 
est in the transform domain is restricted to those spatial 
frequencies where the characteristic function of the 
positions of the multiple-point impulses is negligible. 
It is also required that the impulses be distributed such 
that the 'center of mass' of the impulses is located at 
the origin. Under these assumptions, the sixth order 
joint density function is rewritten as 

Pe(/?, X, Ru, Xu, R,„ Xv) 

-pR(R)px(X)pM)pXmiXl,)pKm(R.)pXp(XP), 

(11) 

where the notation pt(z) represents the first order Gaus- 
sian density function for the random variable z. Substi- 
tuting appropriate expressions for the Gaussian density 
functions into Eq. (11) and the result into Eq. (9), the 
expression for the average number of zeros becomes 

Msi- j ... j 8(R)8(X)\J\pR(R)px{X) 

xpK.(K)PxSXu)pM)Px„(x») 

XdRdXdRu dR„ dXu dXv d« du 

 1_ f       f     8(R)8(X)\J\ 
(2TT)3 J - J (2TT)3 J      J <TR(rR.orRjTxcrXm(rx„ 

(R-HK)2      (X-fix) 
Xexp  — 

2<rl 2al ̂  

xexpL—i^ i^rJ 
xexpL—Si—2^r\ 
XdÄ...dX„du du, (12) 

where it is not assumed that the field components are 
zero-mean and the spatial-frequency dependence of the 
variances crR, ax, aRu, etc., has been retained, although 
not explicitly shown. Satisfying the conditions for 
which the field components are uncorrelated also 
assures that each component is in fact zero-mean, the 
variances are independent of the spatial frequencies u 
and v, and crR = ax, crRii=<TXm, and <TRV = <TXII. There- 
fore the average number of zeros may be written as 

Ms/= (2»)4^J"-J6W8W|J| 

Xexp 

xdÄ dXdÄM d/e„ dXu dX„ d« dv (13) 

It is noted that we have made the assumption that either 
the characteristic function for the impulse positions is 
delta-like or that we are restricting the range of inte- 
gration to those frequencies for which the characteristic 
function is negligible. 

Eq. (13) is readily evaluated to give 

M' (14) 

for the average number of zeros per area. In those 
regions of the transform domain where the character- 
istic functions of the positions of the impulses are neg- 
ligible, the variances are given as 

<7R 
2-E 
" 2' 

a2
R=2i?N(xl),    al^l^Nfji) , 

(15) 

and the average number of zeros per area becomes 

M= ^d)(2i72JV)V<^><^>=2W<^><^> , 

(16) 

where <*j|) is the second moment of the ^-coordinate 
of the impulse positions and (yZ) is the corresponding 
second moment of the y-coordinates. 

If it is assumed that the impulses are uniformly dis- 
tributed within a rectangular window of size WxX.Wy, 
then the average number of zeros per area is 

M~(ir/6)WXW, x"y (17) 

It is noteworthy that this expression for the average 
number of zeros per area, M, is independent of N, the 
number of impulses in the blur function. Rather the 
average number of zeros is governed by the distribution 
of the impulses. 

Fig. 7 contains a plot of the number of zeros of the 
transfer function versus the area of the window enclos- 
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Fig. 7. Dependence of the average number of zeros per unit area for 
the random-walk transfer function on the size of the window enclos- 
ing the impulses. The solid curve is the Iheoretical result obtained 
from Eq. (16) and the dashed curve is the best-fit result for the 
experimental data points shown as the symbols. Note that the average 
number of zeros is independent of the number of impulses in the blur 
function. 

ing the impulses. Included in the plot are the experi- 
mental results for six values of the area, the theoretical 
estimate from Eq. (17), and a minimum chi-squared 
fit [23] to the experimental data using the expression 

curve fit = - WXWV, 
a (18) 

where the best-fit value of a was found to be 5.8 as 
opposed to the value of 6.0 of Eq. (17). It is seen in 
this plot that there is excellent agreement between the 
iheoretical calculation and experimentally obtained 
results. 

An important result of this research is realizing that 
there is a small likelihood of encountering a zero when 
sampling the transfer function for the image recovery 
process. Hence it is worthwhile to consider an approx- 
imate illustrative calculation of the probability per 
frame of encountering a zero in the transfer function. 
For the image recovery, consider sampling the transfer 
function on a lattice of 512X512 pixels and the frame 
to be of unit area. If due to noise fluctuations, we take 
the transfer function B(fx,f,) to be zero in a tiny region 
around each discrete zero, i.e., an infinitesimal area 
A/.X A/v that is (2X lO-")2, then the probability, P, 
of encountering a zero is approximately 

P-A/(512)2(2X10"6) -6\2 (19) 

where M is the average number of zeros. In the blurred 
bird of Fig. 2, the blur function impulses were enclosed 
in a window of size 64X64 pixels. From the curve 
shown in Fig. 7, there will be approximately 2200 zeros 
in the transform space and therefore the probability, of 
encountering a zero is given by 

P = 2200(512)2(2X10_6)2= 1/433. (20) 

Thus, for this case, a zero will be encountered in the 
transform domain once in every 433 frames. In a typical 
set of computer simulations (50 different MPIR), we 
recover images of the high quality shown in Fig. 3. 
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Fig. 8. Text image blurred with a 50-point impulse response. The 
original image contains 512X1024 pixels and the text is no longer 
readable. 
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5. Coding of textual images 

To investigate the effects of blurring textual images, 
an independent MPIR was used to construct the 
blurred/coded image of Fig. 8. In this experiment a 
page of text is digitized and blurred using a 50-point 
MPIR. The positions of the impulses are restricted to 
lie within a 64 X 64 pixel window centered on the origin 
and are chosen from a computer generated ensemble of 
uniformly distributed random numbers. One can see 
that the MPIR has coded the text beyond recognition. 
The reconstructed image, using the appropriate gener- 
alized inverse filter, is shown in Fig. 9. There is only 

LINCOLN'S GETTYSBURG ADDRESS 

"Fourscore and seven years ago our fathers brought 

forth on this continent a new nation, conceived in liberty, 

and dedicated to the proposition that all men are created 

equal. Now we are engaged in a great civil war, testing 

whether that nation, or any nation so conceived and so 

dedicated, can long endure. We are met on a great battle- 

field of that war. We have come to dedicate a portion of 

that field, as a final resting place for those who here gave 

their lives that that nation might live. It is altogether 

fitting and proper that we should do this. But, in a larger 

sense, we cannot dedicate—we cannot consecrate—we 

cannot hallow—this ground. The brave men, living and 

dead, who struggled here, have consecrated it, far above 

our poor power to add or detract. The world will little 

note, nor long remember, what we say here, but it can 

never forget what they did here. It is for us the living, 

rather, to be dedicated here to the unfinished work which 

they who fought here have thus far so nobly advanced. 

It is rather for us to be here dedicated to the great task 

remaining before us,—that from these honored dead we 

take increased devotion to that cause for which they gave 

the last full measure of devotion—that we here highly re- 

solve that these dead shall not have died in vain—that 

this nation, under God, shall have a new birth of free- 

dom—and that government of the people, by the people, 

for the people, shall not perish from the earth." 

Fig. 9. Text image reconstructed using an appropriate generalized 
inverse filter for the 50-point impulse response used to generated 
Fig. 8. The original scene has been faithfully recovered and the text 
is again readable. 

negligible error between the original scanned image 
and the recovered image. 

From Figs. 2 and 8, the controlled blur is seen to be 
a technique for obtaining privacy or coding in image 
transmission. We have investigated the degree to which 
privacy is achieved by reconstructing the blurred bird 
using 20 points correctly positioned and 5 points cho- 
sen at random. Under these conditions the image recov- 
ery gives barely perceptible results. For 17 points 
correctly located and 8 in error, the recovered bird is 
not recognizable. 

We have obtained excellent reconstructions of 
images that have been degraded by the multiple-point 
impulse response, which consists of irregularly posi- 
tioned impulses. The blurred bird and the recovery are 
shown in Figs. 2 and 3, respectively. It is found that, 
although the zeros of the real and imaginary parts of 
the transfer function form closed, continuous contours, 
zeros of the transfer function occur at discrete locations 
and do not have a deleterious effect on the reconstruc- 
tions. 
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Abstract 

A theory is presented for image retrieval when a planar transparency is illuminated by spatially incoherent light that 
propagates in free space and is then recorded on a CCD array, but without using an imaging lens. Based on Maxwell's' 
equations and Fourier-optical, linear-systems theory, equations are derived for digital processing of this badly blurred image 
in order to recover a reasonable facsimile of the original. Rigorous impulse responses and their corresponding transfer 
functions are presented for the cases of general amplitude illumination and for incoherent illumination. 

1. Introduction 

Image processing methods have been applied to 
remove blur due to motion, degradation due to 
diffraction limits, and blur due to poor focus [1,2]. 
As computing power has increased, these methods 
are being more widely applied to include correction 
for known aberrations and image recovery using 
partial information [3]. A recent study showed that 
blur caused by an impulse response consisting of 
irregularly spaced impulses could be completely re- 
moved [4,5]. Since the corresponding transfer func- 
tion contains only discrete, countable zeros^ it is 
found that either a simple inverse filter or a Weiner- 
Helstrom filter [6] yields good results. 

In this paper we consider the feasibility of image 
recovery when the image blur is due to diffraction 
spreading through open space without the use of a 

lens, as in Fig. 1. Restating, we consider whether it 
is possible to retrieve an image at a remote location 
from an incoherently illuminated object transparency 
that is located in the plane at z = 0. No lens is used 
for forming an image, and the badly blurred record- 
ing is made electronically by a CCD array at a 
distance z**d. For the theory, an analytic signal 
notation is used so that signals of arbitrary band- 
width can be included, and traveling waves appear in 
an exponential form. We consider a plane-polarized 
scalar   component   of   the   real-valued   electric 
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Fig. I. Basic setup for the theory showing an input transparency 
p(x, y) in the plane z-0. The output intensity is recorded at 
I — d after lensless, free-space propagation. 
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field, denoted by P^Kx, y, z; t). Time truncation 
recKr/T) is used so the temporal Fourier transform, 
Ey(x, y, z; v), is defined by 

E,(x,y, ziv)-r*i'\x, y, z\ t) 

Xrect(t/T) exp(-i2irvt) dr, 

(1) 

where (x, y, z) are Cartesian coordinates for an 
arbitrary point, v is the temporal transform variable, 
and the lim T-* » notation is implicitly understood. 
The signal representations used in this paper follow 
closely that in the literature and are reviewed more 
fully in Refs. [7,8] in the context of diffraction 
integrals based on Maxwell's equations. From Eq. 
(1), the corresponding analytic signal, denoted by the 
subscript *a" in Eyi(x, y, z; v\ is defined as con- 
taining only the positive frequency components as 
follows: 

Eyt(x, y, z; v)<=Ey(x, y, z; j/)[l+sgn(v)]. 

(2) 

The symmetrical step-function, sgn(v) is defined by 

sgn(i>) = 1,       when v>0, 

= -1,   when v<0. (3) 

From the Fourier inversion formula and Eq. (2), we 
can write the time-dependent analytic form 
&yt(x, y, z, t) corresponding to STy

l'> as 

«>(x, y, z, t) - /   £ (jr. y, z; v) 

Xexp(+i2in>/) di>. 

One can also readily verify a well-known alternative 
equation that is handy for computing X^Kx, y, z, t) 
from the analytic form, viz., 

«?r>(*. y, z,t) 

° K.(*. y, z, t) +r;,(x, y, z, tj\/i.  (4) 

2. Linear system theory and diffraction integrals 

Now for the problem at hand, as shown in Fig. 1, 
we will shortly see that it is possible to provide an 
exact solution of Maxwell's equations using the ide- 

alizations inherent in the model. Using the 
Rayleigh-Sommerfeld-Smythe form for the radiation 
in the right-half-space expressed in terms of the 
"known" tangential electric field in the plane at 
z - 0, we can write the exact solution, as follows 
[8,9]: 

£,»(*» y« *:v) 
l   " 

exp(-i/fcK|) 

te)K)- (5) 

11/2 
(6) 

in which 

*,«[(,-,')2 + (y-y')2 + Z
2]' 

and k"2irv/c where c = 3x 108 m/s. One can 
write a similar equation for Ext(x, y, z; v) in terms 
of E„(*\ y, 0; v) and then a separate form for 
Ett(x, y, z; v) in terms of the tangential aperture 
fields Ejx', y', 0; v) and E^ix1, y, 0; v). These 
three equations for EXh, Eyt, and Elt comprise an 
exact solution in integral form for Maxwell's equa- 
tions for radiation from a planar aperture. Eq. (5) 
forms the basis for the calculation of radiation from 
an aperture. Typically one considers a blocking func- 
tion and the source illumination which are implicit in 
the scalar component of the electric field in the 
aperture, £yi(jc\ y, 0; v). 

The linear.system interpretation of Eqs. (5) and 
(6) is to notice that the output scalar amplitude is 
given by a convolution of the input scalar amplitude 
with the impulse response Kx-x", y-y*; v). 
Hence, we can write that 
hix-xf, y-y-, v)- 

exp(-iJU?. 

—MTITW+T]-        O) 
in which Ä, is given by Eq. (6). Since this impulse 
response is space-invariant, we write the following 
simpler form: 

• exp(-i«?0W z\(        l \ 

in which the distance to x, y, z from the origin, J?0, 
is given by 

*o«(*2+y2+*2),/2. (9) 

ä(£)Kr 
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Consider an input transparency p(x, y) placed in 
the plane at z = 0 and illuminated by a plane- 
polarized beam £j,a0(*\ /, 0"; v) incident from 
the left in Fig. 1. Making the usual Kirchhoff ap- 
proximation, we set £j,a(y, y', 0; v) as follows: 

Eyt{*\ y, 0; v) =p(x, y) Eyt0(x>, y\ 0"; v). 

(10) 

For incoherent illumination, we briefly summarize 
the calculation. Denoting the blurred output scene 
recorded at z = d by u2(x, y; v), we calculate the 
expected value of the density of energy in the elec- 
tric field over an ensemble of sources, viz., 

u2(x, y; v) 

= lim 
7*->oo 

Eyi{x, y, d\ v)Ey\(x, y, d\ v) 

00 
The source description for incoherent illumination is 
given by a delta-function form as follows: 

lim < 
T-*oo 

fEyl0(x',y',0-; v)Eyt0{x
n, /,0"; v)\ 

8(y-y)6(y-/)5,(i;), (12) 

in which the input illumination spectral density S{(v) 
is defined by an ensemble average over the sources 
as 

l\Ey0(x
,,?.0-;v)\2 A0\ 

in which A0 is an infinitesimal area of coherence. 
The blurred image recorded at the CCD is given by 
calculation of Eq. (11) substituting Eqs. (5) and (12) 
and integrating over the input plane. In a linear 
system formalism, we write the blurred image 
recorded at the CCD array (z •» d) as a convolution 
of the input picture intensity transmittance with the 
impulse response for incoherent illumination. The 
result is given by 

"2(*. y> v)-p(x, y)p*(x,y)*h(x, y;d) 

Xh'(x,y;d)S0(v), (14) 

where the asterisk * denotes a two-dimensional 
convolution over (JC, y). 

Interestingly, by Eqs. (8) and (9) into (14), we 
find the exact expression for the impulse response 
due to free space propagation from an incoherently 
illuminated planar aperture, as follows: 

\h(x, y;d;v)\2 

a J2 1 

2TT (x2+y2 + d2Y 
k2 + 

1 

x2+y2 + d2 

(15) 

The exp(-iW?,) terms in Eq. (5) have cancelled due 
to the delta correlation of the source. Hence, in Eqs. 
(14) and (15) the solution is not limited to the usual 
paraxial and z-distance limitations inherent in the 
Fresnel-zone case [10]. Moreover, we recognize in 
Eq. (15) that the first member on the right (*2) is the 
dominant term in the propagation once we are a few 
wavelengths from the aperture. The second term 
[\/{x2 +y2 + d2)] is the near zone term and it is 
important in the limiting case as z goes to zero, say, 
in Eq. (5). 

3. Image recovery for free-space propagation 

In Fourier optics with incoherent illumination, 
one characterizes a space-invariant linear optical sys- 
tem by an impulse response and a corresponding 
optical transfer function. The Fourier transform of 
the blurred picture at z« d is denoted by 
U2(fx, fy; v) and defined by 

Wfx'fyW)- ff dxdyu2(x,y,V) 
— 00 

Xexp[-i27r(/Jt;c+/,y)],    (16) 

where (/,, fy) are spatial transform variables for 
(x,y). The spatial frequency response formula for 
free space propagation is obtained by taking the 
two-dimensional transform of Eq. (14). The result is 
given by a simple product of the Fourier transform 
of object intensity and the optical transfer function, 
as follows: 

v2(fx,fy',y) 

-y|p(*. y)\2'r\h(x,y;d,v)\2-S0(V), 
(17) 
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Table 1 

Impulse response and transfer functions for free-space propagation from a planar aperture at z - 0 into the right-half-space. For the general 
amplitude transfer function, select the positive square root when ft +ft < (k/2ir)2 and the negative imaginary value when ft +ft > 
(k/2ir)2 to include only damped evanescent waves in the latter case " 

System description 
input 

Impulse response 

General case 
amplitude input 

p(x, y; v)Eyt0M 
Incoherent illumination 

intensity case 
\pix,y,V)\\M 

[expf. - i kR0)/2irR0\ z/Roy.ik+\ /R0) 

[z2/{2ir)2R*0U
2 + \/R2) 

Notation: Rl - x2 + y2 + z2 and f2 "ft +f2 

Transfer function 

cxp(-i2vz[(k/2ir)
2 -ft -ft]*'2) 

(*V„ Ar,/2X*r^ + (ir//*2/4)few^ 

in which the operator 9~ denotes the two dimen- 
sional spatial transform over (x, y). To calculate the 
Fourier transform of | Kx, y; d; v) \2 we notice the 
cylindrical symmetry in Eq. (15) and obtain the 
result with two applications of Eq. (6.565.4) of Ref. 
[11]. The resulting optical-transfer-function for free 
space propagation from z = 0 to d is given by 

9-1 A( x, y; d; u) \2 = ^3. K ^ dfp) 

"ft 
+ -fK2(2ndfp),     (18) 

in which the cylindrical spatial frequency, fp, is 
defined by 

/, 
k"/2 

(19) 

K^trdf^ and K2(2irdfp) are the modified Bessel 
functions of the second kind of order one and two, 
respectively. 

One clearly sees the dominance of the first mem- 
ber in Eq. (18) by the ratio of their coefficients 
which is irrd/(X2fp). With A-0.5 /im, d- 10 
mm, fp" 10 c/mm this ratio is roughly,10*. It is 
instructive to plot Kf^trdf^ on a logarithmic scale 
as in Fig. 2. From this, we see that Kx<2-ndfp) is 
infinite at the origin and drops exponentially to zero 
for infinite argument This is clear from the follow- 
ing expressions valid for small arguments, from Eq. 
(9.6.9) in Ref. [12]: 

Kx{v)st\/v   and    K2(v) »2/v2, (20) 

as v goes to zero. By Eq. (20) it is clear that the 
transfer function in Eq. (18) is finite as (dfp)-*0. 

And at large values for their arguments, the modified 
Bessel functions of the second kind have the follow- 
ing expression: 

Km{v)m{v/V)^t '/2. (21) 

Most interestingly, the modified Bessel functions 
K„(v) do not have any finite zeros for real argu- 
ments. With reference to Eq. (17), this makes the 
blurred image U2(fx, fy; v) a prime candidate for 
image retrieval, i.e., recovering 9~\ p(x, y)\2 and 
hence the image intensity \ p(x, y)\2, since the 
Fourier transform of the blurring function, &~\h\2, 
has no zeros in the real frequency plane (fx, /). 
Due to the absence of zeros in the transfer function 
but with the inclusion of noise, it is hopeful that the 
Weimer-Helstrom modified inverse filter would be 
an appropriate start As pointed out in our earlier 

2xdf 
p 

Rg. 2. The modified Bessel function K f.2irayp) plotted logarith- 
mically versus the argument. The plot starts at 2irdfp - I in order 
to avoid the singularity at the origin. 
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article [5], this type of inversion problem to recover 
I p(x, y; v)|2 is ill-posed, and it may well need 
some means of regularization which is beyond the 
scope of this article [13,14]. 

4. Summary 

In this paper we have presented the exact impulse 
responses for free-space propagation into the right- 
half-space from an idealized planar aperture, see 
Table 1 and Eqs. (7) and (15) for the cases of 
amplitude illumination and incoherent illumination, 
respectively. With exact results in the framework of 
Maxwell's equations, we find that free-space propa- 
gation from a planar aperture is space-invariant in 
general. One main theme is to derive a rigorous 
expression for the optical-transfer-function of free 
space, and thereby secondly to study the feasibility 
of image retrieval using a lensless recording system 
and post digital processing. We find the interesting 
result that this intensity based transfer function in 
Eq. (18) consists principally of a modified Bessel 
function of the second kind, Kt(.v), which is well- 
known not to have any zeros for finite real values of 
its argument The significance of this is that recovery 
of the pictorial image, I p{x, y; v)\ \ is likely using 
digital processing means. 
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